Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Journal of Veterinary Science ; : e71-2023.
Article in English | WPRIM | ID: wpr-1001938

ABSTRACT

With the growing interest in companion animals and the rapidly expanding animal healthcare and pharmaceuticals market worldwide. With the advancements in RNAsequencing (RNA-seq) technology, it has become a valuable tool for understanding biological processes in companion animals and has multiple applications in animal healthcare.Historically, veterinary diagnoses and treatments relied solely on clinical symptoms and drugs used in human diseases. However, RNA-seq has emerged as an effective technology for studying companion animals, providing insights into their genetic information. The sequencing technology has revealed that not only messenger RNAs (mRNAs) but also noncoding RNAs (ncRNAs) such as long ncRNAs and microRNAs can serve as biomarkers. Based on the examination of RNA-seq applications in veterinary medicine, particularly in dogs and cats, this review concludes that RNA-seq has significant potential as a diagnostic and research tool. It has enabled the identification of potential biomarkers for cancer and other diseases in companion animals. Further research and development are required to maximize the utilization of RNA-seq for improved disease diagnosis and therapeutic targeting in companion animals.

2.
Biomolecules & Therapeutics ; : 213-220, 2022.
Article in English | WPRIM | ID: wpr-925613

ABSTRACT

Although there have been advances in cancer therapy and surgical improvement, lung cancer has the lowest survival rate (19%) at all stages. This is because most patients are diagnosed with concurrent metastasis, which occurs due to numerous related reasons. Especially, lung cancer is one of the most common and malignant cancers in the world. Although there are advanced therapeutic strategies, lung cancer remains one of the main causes of cancer death. Recent work has proposed that epithelialmesenchymal transition (EMT) is the main cause of metastasis in most cases of human cancers including lung cancer. EMT involves the conversion of epithelial cells, wherein the cells lose their epithelial abilities and become mesenchymal cells involved in embryonic development, such as gastrulation and neural crest formation. In addition, recent research has indicated that EMT contributes to altering the cancer cells into cancer stem cells (CSCs). Although EMT is important in the developmental stages, this process also activates lung cancer progression, including complicated and diverse signaling pathways. Despite the numerous investigations on signaling pathways involved in the progression of lung cancer, this malignancy is considered critical for treatment. EMT in lung cancer involves many transcription factors and inducers, for example, Snail, TWIST, and ZEB are the master regulators of EMT. EMT-related factors and signaling pathways are involved in the progression of lung cancer, proposing new approaches to lung cancer therapy. In the current review, we highlight the signaling pathways implicated in lung cancer and elucidate the correlation of these pathways, indicating new insights to treat lung cancer and other malignancies.

3.
Biomolecules & Therapeutics ; : 151-161, 2022.
Article in English | WPRIM | ID: wpr-925607

ABSTRACT

This study elucidates the anti-cancer potential of gallic acid (GA) as a promising therapeutic agent that exerts its effect by regulating the PI3K/Akt pathway. To prove our research rationale, we used diverse experimental methods such as cell viability assay, colony formation assay, tumor spheroid formation assay, cell cycle analysis, TUNEL assay, Western blot analysis, xenograft mouse model and histological analysis. Treatment with GA inhibited cell proliferation in dose-dependent manner as measured by cell viability assay at 48 h. GA and cisplatin (CDDP) also inhibited colony formation and tumor spheroid formation. In addition, GA and CDDP induced apoptosis, as determined by the distribution of early and late apoptotic cells and DNA fragmentation. Western blot analysis revealed that inhibition of the PI3K/Akt pathway induced upregulation of p53 (tumor suppressor protein), which in turn regulated cell cycle related proteins such as p21, p27, Cyclin D1 and E1, and intrinsic apoptotic proteins such as Bax, Bcl-2 and cleaved caspase-3. The anti-cancer effect of GA was further confirmed in an in vivo mouse model. Intraperitoneal injection with GA for 4 weeks in an A549-derived tumor xenograft model reduced the size of tumor mass. Injection of them downregulated the expression of proliferating cell nuclear antigen and p-Akt, but upregulated the expression of cleaved caspase-3 in tumor tissues. Taken together, these results indicated that GA hindered lung cancer progression by inducing cell cycle arrest and apoptosis, suggesting that GA would be a potential therapeutic agent against non-small cell lung cancer.

4.
The Korean Journal of Parasitology ; : 153-157, 2021.
Article in English | WPRIM | ID: wpr-903857

ABSTRACT

This study reports the first two clinical cases of spirometrosis caused by Spirometra sp. in cats in Korea. In these two cases, the cats vomited, and long proglottids of tapeworm were recovered. The sick cats presented with anorexia and lethargy. However, they unexpectedly showed no diarrhea, which is the main symptom of spirometrosis. Based on a fecal floatation test as well as morphological and molecular analyses, the parasite was diagnosed as Spirometra sp. The 2 cases were treated with praziquantel. This study suggests regular monitoring of health and deworming in companion animals, even when animals are well cared for, with regular preventive medication. Additionally, spirometrosis should be considered in the differential diagnosis in cases of gastrointestinal symptoms in Spirometra endemic areas.

5.
The Korean Journal of Parasitology ; : 153-157, 2021.
Article in English | WPRIM | ID: wpr-896153

ABSTRACT

This study reports the first two clinical cases of spirometrosis caused by Spirometra sp. in cats in Korea. In these two cases, the cats vomited, and long proglottids of tapeworm were recovered. The sick cats presented with anorexia and lethargy. However, they unexpectedly showed no diarrhea, which is the main symptom of spirometrosis. Based on a fecal floatation test as well as morphological and molecular analyses, the parasite was diagnosed as Spirometra sp. The 2 cases were treated with praziquantel. This study suggests regular monitoring of health and deworming in companion animals, even when animals are well cared for, with regular preventive medication. Additionally, spirometrosis should be considered in the differential diagnosis in cases of gastrointestinal symptoms in Spirometra endemic areas.

6.
Cancer Research and Treatment ; : 797-811, 2019.
Article in English | WPRIM | ID: wpr-763116

ABSTRACT

PURPOSE: In the present study, human neural stem cells (hNSCs) with tumor-tropic behavior were used as drug delivery vehicle to selectively target melanoma. A hNSC line (HB1.F3) was transduced into two types: one expressed only the cytosine deaminase (CD) gene (HB1.F3. CD) and the other expressed both CD and human interferon-β (IFN-β) genes (HB1.F3.CD. IFN-β). MATERIALS AND METHODS: This study verified the tumor-tropic migratory competence of engineered hNSCs on melanoma (A375SM) using a modified Boyden chamber assay in vitro and CM-DiI staining in vivo. The antitumor effect of HB1.F3.CD and HB1.F3.CD.IFN-β on melanoma was also confirmed using an MTT assay in vitro and xenograft mouse models. RESULTS: A secreted form of IFN-β from the HB1.F3.CD.IFN-β cells modified the epithelial-mesenchymal transition (EMT) process and metastasis of melanoma. 5-Fluorouracil treatment also accelerated the expression of the pro-apoptotic protein BAX and decelerated the expression of the anti-apoptotic protein Bcl-xL on melanoma cell line. CONCLUSION: Our results illustrate that engineered hNSCs prevented malignant melanoma cells from proliferating in the presence of the prodrug, and the form that secreted IFN-β intervened in the EMT process and melanoma metastasis. Hence, neural stem cell-directed enzyme/prodrug therapy is a plausible treatment for malignant melanoma.


Subject(s)
Animals , Humans , Mice , Cell Line , Cytosine Deaminase , Epithelial-Mesenchymal Transition , Flucytosine , Fluorouracil , Heterografts , In Vitro Techniques , Melanoma , Mental Competency , Neoplasm Metastasis , Neural Stem Cells , Stem Cells
7.
Biomolecules & Therapeutics ; : 25-33, 2019.
Article in English | WPRIM | ID: wpr-719411

ABSTRACT

Mesenchymal stem cells are classified as multipotent stem cells, due to their capability to transdifferentiate into various lineages that develop from mesoderm. Their popular appeal as cell-based therapy was initially based on the idea of their ability to restore tissue because of their differentiation potential in vitro; however, the lack of evidence of their differentiation to target cells in vivo led researchers to focus on their secreted trophic factors and their role as potential powerhouses on regulation of factors under different immunological environments and recover homeostasis. To date there are more than 800 clinical trials on humans related to MSCs as therapy, not to mention that in animals is actively being applied as therapeutic resource, though it has not been officially approved as one. But just as how results from clinical trials are important, so is to reveal the biological mechanisms involved on how these cells exert their healing properties to further enhance the application of MSCs on potential patients. In this review, we describe characteristics of MSCs, evaluate their benefits as tissue regenerative therapy and combination therapy, as well as their immunological properties, activation of MSCs that dictate their secreted factors, interactions with other immune cells, such as T cells and possible mechanisms and pathways involved in these interactions.


Subject(s)
Animals , Humans , Dinoprostone , Homeostasis , Immunomodulation , In Vitro Techniques , Mesenchymal Stem Cells , Mesoderm , Multipotent Stem Cells , Regeneration , Regenerative Medicine , T-Lymphocytes , Toll-Like Receptors
8.
Biomolecules & Therapeutics ; : 503-511, 2018.
Article in English | WPRIM | ID: wpr-717249

ABSTRACT

Triclosan (TCS) and bisphenol A (BPA) are endocrine-disrupting chemicals that interfere with the hormone or endocrine system and may cause cancer. Kaempferol (Kaem) and 3,3′-diindolylmethane (DIM) are phytoestrogens that play chemopreventive roles in the inhibition of carcinogenesis and cancer progression. In this study, the influence of TCS, BPA, Kaem, and DIM on proliferation and apoptotic abilities of VM7Luc4E2 breast cancer cells were examined. MTT assay revealed that TCS (0.1–10 μM), BPA (0.1–10 μM) and E2 (0.01–0.0001 μM) induced significant cell proliferation of VM7Luc4E2 cells, which was restored to the control (0.1% DMSO) by co-treatment with Kaem (30 μM) or DIM (15 μM). Reactive oxygen species (ROS) production assays showed that TCS and BPA inhibited ROS production of VM7Luc4E2 cells similar to E2, but that co-treatment with Kaem or DIM on VM7Luc4E2 cells induced increased ROS production. Based on these results, the effects of TCS, BPA, Kaem, and DIM on protein expression of apoptosis and ROS production-related markers such as Bax and Bcl-xl, as well as endoplasmic reticulum (ER) stress-related markers such as eIF2α and CHOP were investigated by Western blot assay. The results revealed that TCS, and BPA induced anti-apoptosis by reducing ROS production and ER stress. However, Kaem and DIM effectively inhibited TCS and BPA-induced anti-apoptotic processes in VM7Luc4E2 cells. Overall, TCS and BPA were revealed to be distinct xenoestrogens that enhanced proliferation and anti-apoptosis, while Kaem and DIM were identified as natural chemopreventive compounds that effectively inhibited breast cancer cell proliferation and increased anti-apoptosis induced by TCS and BPA.


Subject(s)
Apoptosis , Blotting, Western , Breast Neoplasms , Breast , Carcinogenesis , Cell Proliferation , Endocrine System , Endoplasmic Reticulum , Phytoestrogens , Reactive Oxygen Species , Triclosan
9.
Biomolecules & Therapeutics ; : 298-305, 2018.
Article in English | WPRIM | ID: wpr-714736

ABSTRACT

Rhomboid family member 2 gene (Rhbdf2) is an inactive homologue lacking essential catalytic residues of rhomboid intramembrane serine proteases. The protein is necessary for maturation of tumor necrosis factor-alpha (TNF-α) converting enzyme, which is the molecule responsible for the release of TNF-α. In this study, Rhbdf2 knockout (KO) mice were produced by CRISPR/CAS9. To see the effects of the failure of TNF-α release induced by Rhbdf2 gene KO, collagen-induced arthritis (CIA), which is the representative TNF-α related disease, was induced in the Rhbdf2 mutant mouse using chicken collagen type II. The severity of the CIA was measured by traditional clinical scores and histopathological analysis of hind limb joints. A rota-rod test and grip strength test were employed to evaluate the severity of CIA based on losses of physical functions. The results indicated that Rhbdf2 mutant mice showed clear alleviation of the clinical severity of CIA as demonstrated by the significantly lower severity indexes. Moreover, a grip strength test was shown to be useful for the evaluation of physical functional losses by CIA. Overall, the results showed that the Rhbdf2 gene has a significant effect on the induction of CIA, which is related to TNF-α.


Subject(s)
Animals , Humans , Mice , Arthritis, Experimental , Chickens , Collagen Type II , Extremities , Hand Strength , Joints , Mice, Knockout , Serine Proteases , Tumor Necrosis Factor-alpha
10.
Cancer Research and Treatment ; : 79-91, 2017.
Article in English | WPRIM | ID: wpr-127967

ABSTRACT

PURPOSE: Genetically engineered stem cells may be advantageous for gene therapy against various human cancers due to their inherent tumor-tropic properties. In this study, genetically engineered human neural stem cells (HB1.F3) expressing Escherichia coli cytosine deaminase (CD) (HB1.F3.CD) and human interferon-β (IFN-β) (HB1.F3.CD.IFN-β) were employed against lymph node–derived metastatic colorectal adenocarcinoma. MATERIALS AND METHODS: CD can convert a prodrug, 5-fluorocytosine (5-FC), to active 5-fluorouracil, which inhibits tumor growth through the inhibition of DNA synthesis,while IFN-β also strongly inhibits tumor growth by inducing the apoptotic process. In reverse transcription polymerase chain reaction analysis, we confirmed that HB1.F3.CD cells expressed the CD gene and HB1.F3.CD.IFN-β cells expressed both CD and IFN-β genes. RESULTS: In results of a modified trans-well migration assay, HB1.F3.CD and HB1.F3.CD.IFN-β cells selectively migrated toward SW-620, human lymph node–derived metastatic colorectal adenocarcinoma cells. The viability of SW-620 cells was significantly reduced when co-cultured with HB1.F3.CD or HB1.F3.CD.IFN-β cells in the presence of 5-FC. In addition, it was found that the tumor-tropic properties of these engineered human neural stem cells (hNSCs) were attributed to chemoattractant molecules including stromal cell-derived factor 1, c-Kit, urokinase receptor, urokinase-type plasminogen activator, and C-C chemokine receptor type 2 secreted by SW-620 cells. In a xenograft mouse model, treatment with hNSC resulted in significantly inhibited growth of the tumor mass without virulent effects on the animals. CONCLUSION: The current results indicate that engineered hNSCs and a prodrug treatment inhibited the growth of SW-620 cells. Therefore, hNSC therapy may be a clinically effective tool for the treatment of lymph node metastatic colorectal cancer.


Subject(s)
Animals , Humans , Mice , Adenocarcinoma , Chemokine CXCL12 , Colorectal Neoplasms , Cytosine Deaminase , Cytosine , DNA , Escherichia coli , Flucytosine , Fluorouracil , Genetic Therapy , Heterografts , Interferon-beta , Lymph Nodes , Lymphatic Metastasis , Neural Stem Cells , Polymerase Chain Reaction , Reverse Transcription , Stem Cells , Urokinase-Type Plasminogen Activator
11.
Journal of Korean Neurosurgical Society ; : 60-66, 2017.
Article in English | WPRIM | ID: wpr-10434

ABSTRACT

OBJECTIVE: Sacral insufficiency fracture (SIF) contributes to severe low back pain. Prolonged immobilization resulting from SIF can cause significant complications in the elderly. Sacroplasty, a treatment similar to vertebroplasty, has recently been introduced for providing pain relief in SIF. The purpose of this study is to investigate the clinical short-term effects of percutaneous sacroplasty on pain and mobility in SIF. METHODS: This study is conducted prospectively with data collection. Sixteen patients (3 men and 13 women) with a mean age of 77.5 years (58 to 91) underwent sacroplasty. Patients reported visual analogue scale (VAS; 0–10) and Oswestry disability index (ODI; 0–100%) scores. VAS and ODI scores were collected preoperatively and again at one day, one month, and three months postoperatively. Questionnaires measuring six activities of daily living (ADLs) including ambulating, performing housework, dressing, bathing, transferring from chair, and transferring from bed were collected. Ability to perform ADLs were reported preoperatively and again at three months postoperatively. RESULTS: The mean preoperative VAS score (mean±SD) of 7.5±0.8 was significantly reduced to 4.1±1.6, 3.3±1.0, and 3.2±1.2 postoperatively at one day, one month, and three months, respectively (p<0.01). The mean ODI score (%) also significantly improved from 59±14 preoperatively to 15.5±8.2 postoperatively at one month and 14.8±8.8 at three months (p<0.01). All ADL scores significantly improved at three months postoperatively (p<0.01). CONCLUSION: Percutaneous sacroplasty alleviates pain quickly and improves mobility and quality of life in patients treated for SIF.


Subject(s)
Aged , Humans , Male , Activities of Daily Living , Bandages , Baths , Data Collection , Fractures, Stress , Household Work , Immobilization , Low Back Pain , Prospective Studies , Quality of Life , Vertebroplasty
12.
Biomolecules & Therapeutics ; : 109-114, 2016.
Article in English | WPRIM | ID: wpr-23492

ABSTRACT

In Drosophila, rhomboid proteases are active cardinal regulators of epidermal growth factor receptor (EGFR) signaling pathway. iRhom1 and iRhom2, which are inactive homologs of rhomboid intramembrane serine proteases, are lacking essential catalytic residues. These are necessary for maturation and trafficking of tumor necrosis factor-alpha (TNF-α) converting enzyme (TACE) from endoplasmic reticulum (ER) to plasma membrane through Golgi, and associated with the fates of various ligands for EGFR. Recent studies have clarified that the activation or downregulation of EGFR signaling pathways by alteration of iRhoms are connected to several human diseases including tylosis with esophageal cancer (TOC) which is the autosomal dominant syndrom, breast cancer, and Alzheimer's disease. Thus, this review focuses on our understanding of iRhoms and the involved mechanisms in the cellular processes.


Subject(s)
Humans , Alzheimer Disease , Breast Neoplasms , Cell Membrane , Down-Regulation , Drosophila , Endoplasmic Reticulum , Esophageal Neoplasms , Keratoderma, Palmoplantar, Diffuse , Ligands , Peptide Hydrolases , ErbB Receptors , Serine Proteases , Tumor Necrosis Factor-alpha
13.
Laboratory Animal Research ; : 143-150, 2014.
Article in English | WPRIM | ID: wpr-149035

ABSTRACT

Genistein is one of isoflavones mostly derived in a leguminous plant. It is well known as one of phytoestrogens that have structures similar to the principal mammalian estrogen. It has diverse biological functions including chemopreventive properties against cancers. Anticancer efficacies of genistein have been related with the epidemiological observations indicating that the incidence of some cancers is much lower in Asia, where diets are rich in soyfoods, than Western countries. This review deals with in vivo anticancer activities of genistein identified in animal studies being divided into its effects on carcinogenesis and cancer progression. Because animal studies have advantages in designing the experiments to suit the goals, they imply diverse information on the anticancer activity of genistein. The in vivo animal studies have adopted the specific animal models according to a developmental stage of cancer to prove the anticancer efficacies of genistein against diverse types of cancer. The numerous previous studies insist that genistein effectively inhibits carcinogenesis in the DMBA-induced animal cancer models by reducing the incidence of adenocarcinoma and cancer progression in the transgenic and xenograft animal models by suppressing the tumor growth and metastatic transition. Although the protective effect of genistein against cancer has been controversial, genistein may be a candidate for chemoprevention of carcinogenesis and cancer progression and may deserve to be the central compound supporting the epidemiological evidence.


Subject(s)
Animals , Mice , Adenocarcinoma , Asia , Carcinogenesis , Chemoprevention , Diet , Estrogens , Genistein , Heterografts , Incidence , Isoflavones , Mice, Transgenic , Models, Animal , Phytoestrogens , Plants
14.
Laboratory Animal Research ; : 73-78, 2014.
Article in English | WPRIM | ID: wpr-124664

ABSTRACT

According to WHO global estimates from 2008, more than 1.4 billion adults were overweight and among them, over 200 million men and 300 million women were obese. Although the main treatment modalities for overweight and obese individuals remain dieting and physical exercise, the synthetic anti-obesity medications have been increasingly used due to their perceived convenience. Generally, anti-obesity medications are classified as appetite suppressants or fat absorption blockers. In the present study, we examined the adverse side-effects in respect of behavior changes of phentermine and Ephedra sinica (mahuang) that are anti-obesity drugs currently distributed to domestic consumers. Phentermine is mainly classified as an anorexing agent and mahuang a thermogenic agent. Because phentermine and mahuang are considered to display effectiveness through the regulation of nerve system, their potential influences of on behavioral changes were examined employing animal experiments. From the results of experiments testing locomotor activity through the use of treadmill, rota-rod, and open field system, phentermine and mahuang were commonly revealed to induce behavioral changes of rats by reducing a motor ability, an ability to cope with an external stimulus, and a sense of balance or by augmenting wariness or excitement. These adverse effects of phenternime and mahuang in behavioral changes need to be identified in humans and anti-obesity medications such as phentermine and mahuang should be prescribed for only obesity where it is anticipated that the benefits of the treatment outweigh their potential risks.


Subject(s)
Adult , Animals , Female , Humans , Male , Rats , Absorption , Animal Experimentation , Anti-Obesity Agents , Appetite Depressants , Diet , Diethylpropion , Ephedra sinica , Exercise , Models, Animal , Motor Activity , Obesity , Overweight , Phentermine , Rats, Sprague-Dawley
15.
Experimental & Molecular Medicine ; : e108-2014.
Article in English | WPRIM | ID: wpr-103502

ABSTRACT

The epithelial-mesenchymal transition (EMT) is important for embryonic development and the formation of various tissues or organs. However, EMT dysfunction in normal cells leads to diseases, such as cancer or fibrosis. During the EMT, epithelial cells are converted into more invasive and active mesenchymal cells. E-box-binding proteins, including Snail, ZEB and helix-loop-helix family members, serve as EMT-activating transcription factors. These transcription factors repress the expression of epithelial markers, for example, E-cadherin, rearrange the cytoskeleton and promote the expression of mesenchymal markers, such as vimentin, fibronectin and other EMT-activating transcription factors. Signaling pathways that induce EMT, including transforming growth factor-beta, Wnt/glycogen synthase kinase-3beta, Notch and receptor tyrosine kinase signaling pathways, interact with each other for the regulation of this process. Although the mechanism(s) underlying EMT in cancer or embryonic development have been identified, the mechanism(s) in embryonic stem cells (ESCs) remain unclear. In this review, we describe the underlying mechanisms of important EMT factors, indicating a precise role for EMT in ESCs, and characterize the relationship between EMT and ESCs.


Subject(s)
Animals , Humans , Cadherins/metabolism , Embryonic Stem Cells/cytology , Epithelial-Mesenchymal Transition , Signal Transduction , Transcription Factors/metabolism
16.
Journal of Biomedical Research ; : 111-117, 2013.
Article in Korean | WPRIM | ID: wpr-117668

ABSTRACT

N-ethyl-N-nitrosourea (ENU) is a potent mutagen in a mouse model by inducing point mutation in a random manner and, in particular, causing heritable base substitutions in spermatogonia. In this study, systematic development of phenotype-driven mutant mice with large scale was carried out by using ENU. Nine-week-old male mice of C57BL/6J received intraperitoneal injection at three times with 100 mg/kg of ENU at weekly intervals for three weeks. After injections with ENU, the changes of body weight, fatality, recovery of fertile period, and breeding record were measured in these mice. Body weight lost as a result of ENU treatments was reversed after the last ENU injection. Live fertile male mice recovered from infertility from 104 to 165 days after ENU treatments were mated with C57BL/6J female mice for generation of G1 offspring. An average birth rate was 5.9 mice from 1 pair of paternal and maternal mice. All of 231 G1 offspring mice were analyzed by modified-SHIRPA with standard procedure at nine weeks of age. Among G1 mice, 166 mice were identified as mutagenic phenotypes in 20 test items. The changes in mutagenic phenotypes after ENU treatments, for instance, pattern in the region with a different color, touch escape, changes in head morphology, pupil, and teeth, and negative geotaxis etc., were found in these mice. Taken together, these results indicate that ENU may be a trans-generational mutagen in C57BL/6J mice.


Subject(s)
Animals , Female , Humans , Male , Mice , Birth Rate , Body Weight , Breeding , Ethylnitrosourea , Fertile Period , Head , Infertility , Injections, Intraperitoneal , Phenotype , Point Mutation , Pupil , Spermatogonia , Tooth , United Nations
17.
Toxicological Research ; : 229-234, 2013.
Article in English | WPRIM | ID: wpr-194714

ABSTRACT

Phytoestrogens exist in edible compounds commonly found in fruits or plants. For long times, phytoestrogens have been used for therapeutic treatments against human diseases, and they can be promising ingredients for future pharmacological industries. Kaempferol is a yellow compound found in grapes, broccoli and yellow fruits, which is one of flavonoid as phytoestrogens. Kaempferol has been suggested to have an antioxidant and anti-inflammatory effect. In past decades, many studies have been performed to examine anti-toxicological role(s) of kaempferol against human cancers. It has been shown that kaempferol may be involved in the regulations of cell cycle, metastasis, angiogenesis and apoptosis in various cancer cell types. Among them, there have been a few of the studies to examine a relationship between kaempferol and apoptosis. Thus, in this review, we highlight the effect(s) of kaempferol on the regulation of apoptosis in diverse cancer cell models. This could be a forecast in regard to use of kaempferol as promising treatment against human diseases.


Subject(s)
Humans , Apoptosis , Brassica , Cell Cycle , Fruit , Neoplasm Metastasis , Phytoestrogens , Receptors, Estrogen , Social Control, Formal , Vitis
18.
Laboratory Animal Research ; : 131-137, 2013.
Article in English | WPRIM | ID: wpr-226197

ABSTRACT

Stem cells derived from adult tissues or the inner cell mass (ICM) of embryos in the mammalian blastocyst (BL) stage are capable of self-renewal and have remarkable potential for undergoing lineage-specific differentiation under in vitro culturing conditions. In particular, neural stem cells (NSCs) that self-renew and differentiate into major cell types of the brain exist in the developing and adult central nervous system (CNS). The exact function and distribution of NSCs has been assessed, and they represent an interesting population that includes astrocytes, oligodendrocytes, and neurons. Many researchers have demonstrated functional recovery in animal models of various neurological diseases such as stroke, Parkinson's disease (PD), brain tumors, and metastatic tumors. The safety and efficacy of stem cell-based therapies (SCTs) are also being evaluated in humans. The therapeutic efficacy of NSCs has been shown in the brain disorder-induced animal models, and animal models may be well established to perform the test before clinical stage. Taken together, data from the literature have indicated that therapeutic NSCs may be useful for selectively treating diverse types of human brain diseases without incurring adverse effects.


Subject(s)
Adult , Animals , Humans , Astrocytes , Blastocyst , Brain , Brain Diseases , Brain Neoplasms , Central Nervous System , Embryonic Structures , Models, Animal , Neural Stem Cells , Neurons , Oligodendroglia , Parkinson Disease , Stem Cells , Stroke
19.
Journal of Korean Neurosurgical Society ; : 255-257, 2013.
Article in English | WPRIM | ID: wpr-71543

ABSTRACT

Lumbar discal cyst is a rare cause of radiculopathy. Their exact pathogenesis and the optimal treatment modality remain unidentified. Depending on their location, discal cysts cannot always be easily identified intraoperatively. We describe 2 patients with discal cysts and introduce an intraoperative discography technique for discal cyst location. Both patients were treated with surgical excision; with intraoperative discography, the cystic lesions could easily be detected and removed.


Subject(s)
Humans , Radiculopathy
20.
Journal of Biomedical Research ; : 1-7, 2013.
Article in English | WPRIM | ID: wpr-25966

ABSTRACT

Cancer is the result of damage to the genetic system, i.e., dysfunction of the DNA repair system, resulting in dysregulated expression of various molecules, leading to cancer formation, migration, and invasion. In cancer progression, several proteases play a critical role in metastasis; however, their biological mechanism in cancer metastasis is not clearly understood. Among these proteases, cathepsins are a family of lysosomal proteases found in most animal cells. Cathepsins have an important role in protein turnover of mammalian, and are classified into 15 types based on their structure as serine (cathepsin A and G), aspartic (cathepsin D and E), and cysteine cathepsins (cathepsin B, C, F, H, K, L, O, S, V, X, and W). Cysteine cathepsins appear to accelerate the progression of human and rodent cancers, which can be a biomarker of the potency of malignancy or metastasis in mammalian. Overexpression of cyteine cathepsins causes the activation of angiogenesis promoting factor, whereas their downregulation reduces the angiogenesis of cancer progression. Under physiological conditions, cysteine cathepsins are essential in inflammation, infection, and cancer development. Activity of cysteine proteases, i.e., cathepsin B, is required for cancer progression or metastasis. Elevation of cysteine cathepsin is associated with cancer metastasis, angiogenesis, and immunity. Therefore, in this review, we suggest that cysteine cathepsin may be an anticancer target of strong clinical interest, although the exact mechanism of cathepsins in cancer metastasis is under investigation.


Subject(s)
Animals , Humans , Cathepsin B , Cathepsins , Cysteine , Cysteine Proteases , DNA Repair , Down-Regulation , Inflammation , Neoplasm Metastasis , Peptide Hydrolases , Rodentia , Serine
SELECTION OF CITATIONS
SEARCH DETAIL